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Fig. 1: Tool-as-Interface. We propose a scalable data collection and policy learning framework designed to transfer diverse, intuitive, and
natural human data into effective visuomotor policies. The framework enables robots to learn robust policies that can operate effectively
under challenging conditions, such as base and camera movement, and achieve high performance on a variety of complex manipulation tasks.

Abstract—Tool use is critical for enabling robots to perform
complex real-world tasks, and leveraging human tool-use data
can be instrumental for teaching robots. However, existing
data collection methods like teleoperation are slow, prone to
control delays, and unsuitable for dynamic tasks. In contrast,
human natural data—where humans directly perform tasks with
tools—offers natural, unstructured interactions that are both
efficient and easy to collect. Building on the insight that humans
and robots can share the same tools, we propose a framework to
transfer tool-use knowledge from human data to robots. Using
two RGB cameras, our method generates 3D reconstruction,
applies Gaussian splatting for novel view augmentation, employs
segmentation models to extract embodiment-agnostic observa-
tions, and leverages task-space tool-action representations to train
visuomotor policies. We validate our approach on diverse real-
world tasks, including meatball scooping, pan flipping, wine
bottle balancing, and other complex tasks. Our method achieves
a 71% higher average success rate compared to diffusion policies
trained with teleoperation data and reduces data collection time
by 77%, with some tasks solvable only by our framework.
Compared to hand-held gripper, UMI [16], our method cuts data
collection time by 41%. Additionally, our method bridges the
embodiment gap, improves robustness to variations in camera
viewpoints and robot configurations, and generalizes effectively
across objects and spatial setups.

I. INTRODUCTION

Tool use is essential to how humans interact with and
transform their environment [67, 41]. For instance, humans
use a pan to fry food and flip it, ensuring even cooking on
both sides. Despite its significance, tool use beyond parallel
jaw grippers remains underexplored in robotics, with research
primarily focused on simpler tasks like grasping and pick-and-

place operations [6, 46, 10, 36, 35]. In this paper, we focus
on cost-effective data collection and efficient training of robot
policies to rapidly acquire tool-use skills.

Imitation learning provides a promising pathway for robots
to acquire tool-use skills by directly learning from human
demonstrations [21, 26, 27, 29]. The paradigm excels in
handling diverse tool-use tasks, as it bypasses the need for
task-specific programming by relying solely on human demon-
strations. However, its full potential hinges on addressing key
challenges in collecting high-quality training data. Various
teleoperation systems [33, 56, 8, 20, 29, 50, 84, 68, 39,
66, 45, 9] and hand-held grippers [65, 19, 53, 47, 43] have
been developed to facilitate the collection of high-quality data.
Teleoperation methods, such as kinematic replication and hand
or body retargeting, show great potential [85, 22, 74, 62, 48].
However, their reliance on direct access to robot hardware
limits both practicality and scalability. Hand-held grippers [57,
16] offer an alternative by enabling demonstrations in diverse
environments. While they reduce dependency on robotic sys-
tems, their high costs and the technical expertise required for
tasks like 3D printing and assembly restrict their accessibility
to a specialized group of users.

To address these limitations, we turn to human interaction
data — a natural, intuitive method through which humans
interact with their environment during everyday activities
without relying on external devices or specialized setups.
Human interaction data refers to the natural process in which
humans use their hands to operate tools and interact with
and manipulate the environment freely. Unlike controlled
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demonstrations that require expensive hardware or meticulous
preparation, human interaction data involves the spontaneous
use of tools to interact with the environment. Human
interaction data is an accessible, scalable, and cost-effective
approach to data collection, requiring no prior knowledge
or technical expertise, such as 3D printing or assembly,
from participants. However, existing methods struggle to
fully harness the potential of human interaction data. Key
challenges include the embodiment gap and the reliance on
single-view data, which limits the insights that can be drawn
from interaction data [60, 4, 38, 5, 64, 42, 55].

Our framework addresses these challenges by leveraging
the observation that humans and robots can share the same
tools. We propose a novel approach that utilizes human
interaction data to train robust and adaptable robot policies
for diverse tool-use tasks (Figure 1). Our method minimizes
reliance on expensive hardware, making data collection more
scalable and accessible to non-experts. By capturing 3D
information using two RGB cameras and generating 3D
reconstructions, our method enables view-invariant policy
learning through novel view augmentation. To facilitate
direct policy transfer from human interaction data to robotic
systems, we employ a segmentation model to filter out
embodiment-specific information. Additionally, we leverage
task-space tool-action representations to ensure robustness to
variations in robot base configurations.

Our contributions are as follows:
1) We propose a novel framework that leverages two-view

human interaction data to enable scalable, intuitive, and
cost-effective data collection for training robot policies
on complex tool-use tasks.

2) We validate the effectiveness of our approach on diverse
challenging real-world tool-use tasks (e.g., nail hammer-
ing, meatball scooping, pan flipping, wine bottle balanc-
ing, and soccer ball kicking). Our method achieves a
71% higher success and 77% less data collection time
than diffusion policies trained on SpaceMouse [17] or
Gello [74] data, with some tasks solvable only by our
method. Our method also outperforms handheld grippers
like UMI [16], reducing collection time by 41%.

3) We provide an extensive analysis of our method’s ro-
bustness under varying conditions, including changes
in camera poses, robot base movements, and human-
induced perturbations. Additionally, we conduct ablation
studies to evaluate the effects of different design choices
on policy performance, including embodiment segmen-
tation, random cropping, and novel view augmentation.

II. RELATED WORKS

A. Data Collection for Robot Learning

High-quality data is essential for training robots to learn
and generalize across tasks. Simulation data has been widely
used for its cost-effectiveness and scalability [86, 44, 28, 81],
but the gap between simulation and real-world performance
remains a persistent challenge. To overcome this, many

researchers have turned to real-world teleoperated
demonstrations, which offer more reliable transferability
by minimizing the domain gap between training and testing
environments [88, 14, 15, 56, 73]. Advancements in leader-
follower devices, like ALOHA [85, 22] and GELLO [74], have
simplified robot demonstration data collection but remain tied
to specific robot platforms. More recently, portable tools such
as hand-held grippers, e.g., UMI [16] and LEGATO [57], have
emerged as a promising alternative for in-the-wild data collec-
tion. Yet, their high cost and the need for custom robot mod-
ifications continue to limit widespread adoption. Tool-based
policy representations have emerged as an effective way to
collect data for robot learning. MimicTouch uses tactile-based
tools for contact-rich manipulation [79], while ScrewMimic
models bimanual tasks as constrained screw motions for
learning from human videos [3]. However, tactile methods
require extra hardware, and the screw motion assumption may
not hold. Another line of work by Wen et al. [70] aims to learn
category-level representations from a single demo to transfer
pose trajectories across similar objects [70], but assumes a
static target (e.g., battery slot), limiting real-world applicability
in real-world tasks where the spatial configuration of objects
may change. Unlike these methods, our method only requires
natural human data, without assuming access to tactile sensors
or requiring constrained screw motion models, making it
significantly more cost-effective, scalable, and accessible.

B. Cross-Embodiment Policy Learning

Cross-embodiment policy learning enables robots to transfer
policies across embodiments, such as those with different
kinematic structures [25, 52, 77]. Prior work has explored
conditioning policies on embodiment representations using
multi-embodiment datasets [18, 69, 80, 13, 24, 52, 2], but these
approaches often face challenges in effectively leveraging
human interaction data. Recent approaches utilize human data,
such as estimating point flow from human video [72] or gener-
ating latent plan or high-level plans from human data [37, 68].
However, their dependence on robot data for low-level control
limits scalability when robot data is expensive or difficult to
collect. Additionally, prior works highlight the importance of
masking human and robot embodiments for visual consis-
tency [4, 31]. However, Bahl et al. [4] relies on predefined
motion primitives, while Kareer et al. [31] still requires robot
data with human data as augmentation. Our approach adopts
a similar masking idea but enables robots to learn freely, even
agile motions from human videos, without any robot data.
Another line of work tokenizes observation inputs and action
outputs into a unified transformer network, enabling general-
ized policy learning across embodiments [59, 76]. However,
these methods require large models and extensive datasets,
making them resource-intensive and time-consuming to train,
and lack the capability for direct policy transfer between
embodiments. Overall, reliance on robot-specific hardware
and data restricts scalability and accessibility. In contrast, our
method leverages natural human data, eliminating the need for
robot data as a training source.
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Fig. 2: Policy Design. Human interaction data was collected using two RGB cameras and processed through the foundation model
MASt3R [34] to generate 3D reconstructions. Using 3D Gaussian splatting, we sampled novel views to augument the dataset. The human
hand (embodiment) was segmented out from the images to create embodiment-agnostic observations, which serve as inputs to the policy.
To label actions for policy training, a pose estimation model (FoundationPose [71] in this work) was used to extract the tool’s pose in the
camera frame, T camera

tool . A coordinate transformation was then applied to compute the tool’s pose in the task space, T task
tool . Finally, a diffusion

policy was implemented as the visuomotor policy to enable effective learning and execution.

C. Cross-Viewpoint Policy Learning

Viewpoints can change as robots manipulate or interact
with their environment. Existing approaches address viewpoint
changes by learning view-invariant latent representations [58,
11], leveraging equivariant 3D representations [63, 23, 89], or
augmenting input data with diverse viewpoints [51, 87]. An
early attempt by Sharma et al. [61] introduced a hierarchical
model that generates first-person sub-goals from third-person
demonstrations via a high-level module, while a low-level
embodiment-specific module predicts actions. Recent work
by Chen et al. [12] leveraged the SAM model [32] and
ControlNet [83] to transform the viewpoint of one robot into
another, performing view synthesis with ZeroNVS [54] to
augment datasets and enhance policy learning across robots
and viewpoints. Another approach by Yuan et al. [82] com-
bined reinforcement learning with multi-view representation
learning and a Spatial Transformer Network (STN) to im-
prove policy robustness in visually complex environments.
However, these methods face limitations such as scalability
issues in hierarchical models, the complexity of controlled
image editing, high computational costs in view synthesis, and
the need to build sophisticated simulators for reinforcement
learning when adapting to diverse environments. Compared
to previous work, our method enables efficient and scalable
cross-viewpoint transfer from human data by leveraging two
RGB images with the MASt3R [34] foundation model for 3D
reconstruction and employing Gaussian splatting for fast and
cost-effective novel view synthesis.

III. PROBLEM STATEMENT

We formulate the robotic manipulation task as a Markov De-
cision Process, where the goal is to learn a policy π : Or → A
that enables a robot to perform a given task. The robot’s
observation space, Or, consists of a single-view RGB image

Ir ∈ R128×128×3 and proprioception data xr ∈ SE(3). To
train the policy, we use an imitation dataset composed of
N human play, denoted as D = {(Oh

0 , O
h
1 , . . . )}Nn=1. Each

human play observation Oh consists of two RGB images
captured from different viewpoints: Oh = {Iv1, Iv2}, where
Ivi ∈ R480×640×3. We preprocess the dataset to get the
action by using a 6D pose estimation and tracking model,
resulting in D = {(Oh

0 , a0, O
h
1 , a1, . . . )}Nn=1, where each

action a ∈ SE(3).
Our objective is to train a robot to perform the same task as

demonstrated in the human dataset while overcoming the em-
bodiment differences. We assume that the tool is rigid, the tool
and the end effector are rigidly attached during deployment,
and the transformation between the tool and the end effector
is estimated once before deployment. Our approach aims to
allows the robot generalize task execution across embodiments
while retaining the core skills demonstrated by humans.

IV. OUR ROBOT POLICY LEARNING FRAMEWORK

Our framework enables the direct transfer of human play
data into deployable robot policies. It is designed to fulfill the
following key objectives:

• Support for Dynamic and High-Precision Tasks: Hu-
man play, with its inherent fluidity, enables the execution
of highly dynamic tasks. Examples include flipping an
egg in a pan or performing other actions that require
swift, accurate, and natural motions — challenges that
are often difficult to address with traditional teleoperation
systems or handheld grippers.

• Robustness: The framework ensures robust performance
under dynamic conditions, enabling reliable task execu-
tion even with moving or shaking cameras. While broader
deployment on mobile platforms such as quadrupeds or
humanoids remains an open challenge, our design and



experimental results suggest strong potential for general-
ization to dynamic environments.

• Generalization Across Robotic Embodiments and Ob-
ject Categories: The framework demonstrates broad
generalizability, validated on robotic platforms such as
the UR5e and Kinova Gen3. It extends its capabilities to
manipulate a wide range of object categories, showcasing
its adaptability to various tasks, setups, and environments.

• Affordability and Accessibility: The framework requires
only two monocular RGB cameras, such as smartphones,
webcams, or RealSense cameras. With approximately
7.14 billion smartphones worldwide — covering around
90% of the global population — this setup is accessible to
almost anyone [30]. By relying solely on RGB cameras,
the framework eliminates the need for designing, printing,
or manufacturing additional hardware during the data col-
lection, ensuring a cost-effective and inclusive solution.

• Intuitive and Natural Interaction: Users can interact
naturally, without the need for specialized equipment or
additional tools. Using their bare hands and common
tools, participants can intuitively perform a variety of
tasks. Our approach removes technical barriers associated
with 3D printing and other hardware setups, fostering a
seamless, user-friendly experience for data collection.

The following sections outline the framework’s design (Fig-
ure 2), its underlying principles, and logistical considerations
for development and deployment.

A. Tool Usage for Data Collection and Manipulation

Humans naturally and intuitively use tools for everyday
tasks such as cooking, eating, cleaning, and interacting with
the world. Tools act as extensions of human actions, enabling
diverse interaction with objects. The natural relationship be-
tween tools and objects provides an ideal interface for training
robots to mimic human actions using tools, with minimal
gap between human and robot tool usage. While grasping
and pick-and-place tasks have been extensively studied in
previous works, our work focuses on enabling robots to use
the same tools humans commonly employ to interact with their
environment effectively with the following benefits:

• Minimized Embodiment Gap: Abstracting actions to
the tool pose reduces morphological dependency, en-
abling policies to generalize across embodiments.

• Scalable Data Collection: Simplifies the data collection
process by eliminating the need for costly robot-specific
demonstrations, making our method more accessible.

During data collection, humans can naturally use tools with
their hands without requiring additional devices. For robot
deployment, the tool can be attached to the robot in two ways:

• Rigid Grasping: Grasping or picking, which has been
extensively studied in prior works, is demonstrated in our
Kinova Gen3 robot experiments and involves the robot
securely grasping the tool.

• Customized Fast Tool Changer: Designed for versatil-
ity, the tool changer is compatible with any robot that

uses the ISO 9409-1-50-4-M6 flange, as demonstrated in
our UR5e experiments.

B. Embodiment-Agnostic Perception

To encourage cross-embodiment transfer, we adopt a strat-
egy that reduces the perception gap between the training
and deployment phases. During training, human play data
is collected, featuring human hands interacting with tools
and objects. In deployment, robots execute the learned tasks.
As showcased in our experiments, the visual differences be-
tween human hands and robotic end-effectors can introduce
discrepancies that hinder generalization. To address this, we
employ Grounded-SAM [49] to segment and mask out the
embodiments in each phase. During training, human hands
are masked, while during deployment, the robotic embodi-
ments are masked, which ensures that the remaining parts
of the scene in both training and testing phases appear vi-
sually similar. By aligning perception across embodiments,
the framework mitigates distractions caused by embodiment-
specific features, enabling better generalization to human-to-
robot policy transfer.

C. View Augmentation

We use cameras for data collection due to their availability.
With approximately 7.14 billion smartphones equipped with
cameras, our approach can scale effectively [30]. However,
using data from a single camera introduces challenges such as
a lack of 3D perception and sensitivity to camera pose.

a) 3D Reconstruction: To address these issues, we use
MASt3R [34], an image-matching model that reconstructs
accurate 3D environments from two RGB images. This elim-
inates the need for additional depth sensors, which are less
common and consume more power compared to RGB sensors.
We use two cameras, which is the minimum requirement
for 3D reconstruction, to capture demonstration data. Using
only one camera can lead to scale ambiguity in monocular
settings, where poses can be scaled by an arbitrary, scene-
dependent factor. By capturing images from two viewpoints,
MASt3R reconstructs a 3D point cloud without requiring
camera extrinsics or intrinsics, and globally aligns point maps
within a multi-view 3D reconstruction framework. The process
results in high-quality 3D representations.

b) Data Augmentation: Using 3D Gaussian splatting, we
model the scene and synthesize novel viewpoints from human
interaction data, which effectively augments the dataset, gen-
erating additional perspectives even if the training data was
captured from only two views. These synthetic viewpoints
provide the robot with a multi-angle understanding of the
scene, allowing the policy to be trained on a more diverse
and comprehensive set of visual inputs. Additionally, we
apply random cropping to the images for data augmentation
before feeding them into the policy network, following the
approach from diffusion policy [14, 15]. Random cropping
further improves the method’s robustness, enabling the policy
to generalize better to variations in visual inputs.
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tool as the action representation for
the visuomotor policy output.

D. Action Representation for Tool Manipulation

To support general tool usage, we propose a task-frame,
tool-centric action representation denoted as T task

tool . This repre-
sentation focuses on the tool being manipulated, independent
of human or robot morphology or camera pose. A visual
depiction of the coordinate systems is provided in Figure 3.

Using a 6D pose estimation model (e.g., Foundation-
Pose [71]), we determine the tool’s pose in the camera
frame, T camera

tool . To make the policy robust to camera and base
movement, we transform this into the task frame:

T task
tool = T task

cameraT
camera
tool ,

where T task
camera represents the transformation from the camera

to the task frame.

E. Training and Deploying Robot Policies

We use diffusion policy [14] as our policy representation to
predict T task

tool , trained using the ACCESS system [7]. During
deployment, for stationary robots, the task frame aligns with
the base frame. For robots with moving base, base movement
is compensated using T base

task . The final end-effector pose in the
robot base frame, used as the control command for the robot
controller, is computed as:

T base
eef = T base

task T
task
tool T

tool
eef ,

where T tool
eef is the fixed transformation between the tool and

the robot end-effector.

V. POLICY EVALUATIONS

Our experimental evaluations aim to assess the effectiveness
of our framework for deploying robot policy learning across
three key dimensions:

• Capabilities: What skills can our framework enable
robots to acquire, and how robust are the policies under
challenging conditions like a moving camera or base?

• Effectiveness: How well does our framework achieve its
objectives outlined in Section IV? Can it support reliable
and scalable policy learning for complex tasks while

streamlining data collection for highly dynamic, contact-
rich, or dexterous scenarios?

• Policy Execution Efficiency: How efficiently do the
trained policies execute tasks? Does our framework en-
able smoother and more natural motion trajectories? Can
it achieve faster and more fluid task completion compared
to baseline methods?

To evaluate our framework for learning from direct human
play, we developed a set of real-world robotic task domains
using two embodiments: Kinova Gen3 and UR5e. These tasks
are designed to test various aspects of policy capabilities,
efficiency and effectiveness. Table I summarizes the key
characteristics of these tasks. Visual input for the policies is
provided by two RealSense D415 cameras. We describe the
tasks in detail, highlighting their challenges and the specific
capabilities we aim to test.
Nail Hammering: The task involves hammering a 3D-printed
nail, requiring the robot to locate the nail, draw back the
hammer, and strike the nail tip accurately. With a diameter
of less than 15.5 mm, the nail tip demands high precision.
Challenges include localizing the nail tip precisely and plan-
ning effective hammer trajectories. To evaluate generalization,
the initial position of the nail is varied across different spatial
configurations. We collected 180 seconds of data (40 human
play episodes) from a single participant.
Meatball Scooping: In this task, the robot must use a spoon to
scoop a meatball from a pan and transfer it to a bowl. This task
is challenging due to the complex dynamics of the meatball,
which can roll unpredictably within the pan. Additionally, the
interaction between the spoon and the meatball requires careful
control, as improper contact can cause the meatball to slip or
escape the spoon. We randomize the initial position of the
meatball within the pan to test its generalization capability.
We collected 340 seconds of data (50 human play episodes)
from a single participant.
Pan Flipping (Egg, Burger Bun, Meat Patty): The objective
of this task is to use a pan to flip various objects, such as an
egg, a burger bun, and a meat patty. The task is challenging due
to its high-speed dynamics, requiring the robot to overcome
gravity and accurately manage the interaction between the
pan and the objects. Each object differs in weight, shape,
and texture, adding further complexity. This task evaluates
the policy’s ability to handle fast, contact-rich interactions
and adapt to diverse object types. To increase variability, the
initial positions of the objects within the pan are randomized.
Furthermore, the rapid and dynamic nature of the task makes
it unsuitable for classical demonstration collection methods,
highlighting the advantages of using bare-handed human play
for data collection. We collected 50 seconds of data (38 human
play episodes) from a single participant using three different
pans and two object types.
Wine Balancing: In this task, the robot needs to use a hook to
lift a wine bottle and carefully insert it into an unstable, zero-
gravity wine rack. The task is challenging due to the precise
control required to suspend the bottle in mid-air and counteract
gravitational forces effectively. Any over-insertion or under-



TABLE I: Benchmark Attributes of Real-World Tasks. These benchmarks evaluate the precision, adaptability, and capability of our
framework to address tasks requiring high precision, handling extreme dynamics, utilizing extrinsic dexterity, performing in contact-rich
scenarios, and overcoming gravity.

Benchmark High-Precision Extreme Dynamics Using Extrinsic Dexterity Contact-Rich Overcoming Gravity

Task 1: Nail Hammering "

Task 2: Meatball Scooping " " "

Task 3: Pan Flipping (Egg, Bun, Patty) " " " "

Task 4: Wine Balancing " " " "

Task 5: Soccer Ball Kicking "

Task 2: Meatball Scooping

Init Position meatball Scoop meatball SucceededTransfer meatball

Task 1: Nail Hammering

Init Draw back hammer Swing forward Strike nail

Task 3: Pan Flipping (Egg, Meat Patty, or Burger Bun)

Init Tilt pan Flick quickly Succeeded

Task 4: Wine Balancing

Init Hook bottle bottom Lift wine bottle SucceededInsert wine bottle

Catch egg

Task 5: Soccer Ball Kicking

Init Ball slid into the field Strike ball Score goal

Fig. 4: Policy Rollouts. We evaluate diverse real-world tasks: nail hammering (precision in locating a nail tip), meatball scooping (slippery
object, constrained environments), pan flipping (extremely dynamic, high-speed, contact-rich), wine balancing (precise control of unstable
objects), and soccer ball kicking (dynamic object handling, goal-directed actions).

insertion will cause the bottle to lose balance. To constrain
the horizontal movement of the rack, screws were added as
obstacles to limit lateral motion. No additional variability was
introduced. We collected 223 seconds of data (15 human play
episodes) from a single participant.

Soccer Ball Kicking: In this task, the robot must use a golf
club to kick a ball that slides into a field and direct it into the
goal. To increase the challenge, a 3D-printed row of players
serves as obstacles between the robot and the goal. The task
is difficult because the robot must accurately intercept the
moving ball, strike it with the correct force and direction,
and ensure it avoids obstacles before reaching the goal. The

position of the player obstacle varies. We collected 78 seconds
of data (20 human play episodes) from a single participant.

Baselines: The primary focus of this work is to demonstrate
the effectiveness and efficiency of learning directly from hu-
man play without relying on robot-generated data. We compare
our approach against two baselines: a diffusion policy trained
on robot demonstrations, and UMI [16], a hand-held gripper-
based data collection method. The robot demonstration dataset
is collected using either a SpaceMouse or Gello interface
under the same data collection time. Additionally, we perform
ablation studies to analyze the impact of key components,
such as random cropping of images before policy training,



TABLE II: Task Success Rates and Completion Times. Success
rates are the number of successful trials out of total episodes,
and average completion times are based on successful trials. “DP”
refers to the diffusion policy trained on teleoperation data. “Not
Feasible” tasks denote cases where teleoperation failed due to extreme
dynamics, precision, or reactivity demands. Our method consistently
achieves higher success rates and shorter completion times.

Task Method Success Rate Time (s)

Hammer Nailing DP 0/13 -
Ours 13/13 11.0

Meatball Scooping DP 5/12 42.0
Ours 10/12 12.4

Pan Flipping - Egg DP Not Feasible -
Ours 12/12 1.5

Pan Flipping - Burger Bun DP Not Feasible -
Ours 9/12 1.9

Pan Flipping - Meat Patty DP Not Feasible -
Ours 10/12 2.3

Wine Balancing DP Not Feasible -
Ours 8/10 30.9

Soccer Ball Kicking DP Not Feasible -
Ours 6/10 2.0

TABLE III: Task success rates comparing our method with the
hand-held gripper-based method on Nail Hammering.

Method Demo Duration & Count Success Rate

UMI [16] ∼180 seconds (25 demos) 0/13
UMI ∼720 seconds (100 demos) 13/13
Ours ∼180 seconds (40 demos) 13/13

novel view synthesis-based data augmentation, and the effects
of embodiment segmentation. To further illustrate the advan-
tages of our approach, we compare trajectory rollouts for a
meatball-scooping episode, highlighting how our method is
more sample-efficient and less prone to distribution shifts by
eliminating excessive waypoints.
Evaluation Metrics: During testing, we introduce two types
of variations: (1) randomizing the initial spatial configurations
of objects in each task to assess policy generalization, and (2)
varying camera positions to evaluate the robustness of policies
to different viewpoints. All methods, including the baseline
and ablation variants, are tested under the same conditions.
Performance is evaluated using two metrics: success rate,
which measures the proportion of successfully completed task
trials and reflects policy effectiveness, and task completion
time, which captures the average duration to complete tasks
and reflects policy efficiency.

VI. EXPERIMENT RESULTS

In our experiments, we demonstrate that our framework is
both effective and efficient for training robots with advanced
capabilities. Furthermore, leveraging human play data enables
robots to perform smoother movements and acquire skills
that are challenging or even impossible to achieve with
robot-generated data.

A. Capabilities and Effectiveness

Table II presents the results of our real-world robot tasks,
showing that our framework consistently outperforms baseline

methods by achieving significantly higher success rates across
all evaluated scenarios. We further compare our method with
a stronger hand-held gripper baseline, UMI [16], as shown in
Table III. In our default setup, SLAM-based mapping failed
due to low environmental texture. To address this limitation,
we added a textured background to support reliable mapping
for UMI. For the nail hammering task, we evaluated UMI
using 25 demonstrations (matching our collection time) and
100 demonstrations (to assess its ideal performance). UMI
failed all 13 trials with 25 demonstrations but succeeded in
all 13 trials with 100. UMI could not be applied to the wine
balancing task due to contact-induced tool displacement, nor to
the pan flipping task due to tool inertial slippage. In the soccer
kicking task, large and fast motions made it nearly impossible
to localize the demonstration trajectory within the initial map.

In contrast to the baselines, our method demonstrates reli-
able performance across all tasks. As illustrated in Figure 4,
our method excels in real-world policy rollouts by accurately
detecting spatial locations in tasks such as nail hammering
and meatball scooping. For pan flipping tasks, it performs the
high-speed motions required to effectively flip eggs, burger
buns, and meat patties. Additionally, it demonstrates precise
control in lifting and inserting a wine bottle into its stand and
reacts swiftly and accurately to kick a soccer ball in the soccer
ball kicking task. The superior performance of our framework
is primarily due to its ability to collect a significantly larger
volume of episodes within the same data collection timeframe,
as detailed later in Section VII. This broader dataset covers a
wider range of task variations, enabling more robust and adapt-
able policy training. Furthermore, our approach overcomes
the inherent limitations of Gello and SpaceMouse, enabling
the collection of demonstrations for scenarios that these tools
cannot adequately handle due to their constraints.

B. Policy Execution Efficiency

Our framework demonstrates exceptional efficiency in task
execution, achieving faster task completion times and produc-
ing smoother action motions compared to baseline methods,
as shown in Table II. The efficiency is largely attributed to
the nature of human play data, which captures the fluidity and
speed of real-world human activities, resulting in smoother and
more natural trajectories in the training dataset. In contrast,
previous approaches relying on teleoperated data often suffer
from significantly slower speeds and less natural motions, lim-
iting their effectiveness in dynamic scenarios. By leveraging
the realistic dynamics of human play, our framework not only
accelerates task execution but also enhances motion quality,
making it better suited for real-world applications.

C. Benefits of Tool-Based Action Representation in Task Space

We observed that using the tool in the camera frame
as the action representation allows the policy to perform
comparably to prior works when the camera is stationary.
However, the success rate drops to zero when the camera is
moving. Tracking the camera pose in real time during motion
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Fig. 5: Policy Testing Across Camera Poses in Nail Hammering. (a) Camera poses for data collection and evaluation. (b-d) Performance
ranges for methods trained with/without random cropping (RC) and view augmentation (VA).
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Fig. 6: Policy Execution Trajectory Comparison. (a) Initial setup
for meatball scooping. (b) Comparison of end-effector XY trajectories
from our framework and a policy trained on robot-collected data. Our
method generates smoother, more natural, and efficient trajectories
with fewer waypoints, enabling fluid and precise motion. In contrast,
the robot-collected policy produces jerky movements with excessive
waypoints, which hinder task performance.

Fig. 7: Initial States for All Evaluation Episodes. All methods
are evaluated using the same set of manually defined initial states,
overlayed in the image. These states ensure diverse variations to test
the policy’s spatial generalization capabilities.

is non-trivial, leading to incorrect calculations of the end-
effector position in the base frame. When the base moves,
policies relying on the tool in the base frame fail entirely,
achieving zero success. These failures occur because such
policies assume a fixed relative transformation between the
base and the workspace, an assumption invalidated by base
motion. In contrast, representing actions using the tool in
task space enables the policy to remain effective under base

perturbations. Our approach demonstrates robust performance
when camera poses vary, when the base moves, and even
during simultaneous shaking of the camera and base.

D. Effects of Random Cropping and View Augmentation

Our experiments show that random cropping (RC) and
view augmentation (VA) enhance policy robustness to diverse
camera poses. Training with RC improves resilience to minor
camera perturbations, such as small movements or shaking,
while VA extends robustness by exposing the model to a
broader range of camera configurations during training. We
evaluated these techniques on the nail hammering task and
present the results in Figure 5, comparing three models: one
trained with both RC and VA, one with RC only, and one
without either technique. The combined use of RC and VA
significantly expands the working range of camera configu-
rations, including those with substantial deviations from the
original viewpoint. The robustness arises from the model’s
exposure to a diverse set of camera poses during training.

E. Policy Execution Trajectory Comparison

Our framework generates faster, smoother, and more natural
trajectories compared to traditional approaches, as demon-
strated by the end effector (EEF) XY trajectory for the
meatball scooping task in Figure 6. Figure 6(a) depicts the
initial setup of one trial, while Figure 6(b) contrasts the XY
trajectory of the policy rollout using our framework with that
of a policy trained on robot-collected data. Our framework
surpasses the baseline approach in two critical aspects:

• Improved Motion Fluidity: Trajectories generated by
our framework are significantly smoother and less jerky,
enabling more fluid and precise task execution. In con-
trast, the robot-collected data results in jerky motions
caused by excessive waypoints, which disrupt movement
precision and degrade performance.

• Efficient and Effective Learning: The trajectories pro-
duced by our framework contain 10 times fewer way-
points than those from robot-collected data. The reduction
simplifies the learning space, mitigates cumulative error
growth, and minimizes the risk of distribution shifts
commonly observed in behavior cloning. As a result, our
policies exhibit significantly improved sample efficiency.

F. Generalization

Spatial Generalization: Our policy demonstrates strong gen-
eralization across various spatial configurations. Figure 7 illus-
trates the range of initial states tested for multiple tasks. In the
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Fig. 8: Robustness to Camera and Base Movement. (a) Camera Pose Robustness: The policy demonstrated the ability to handle camera
shaking across three tasks—meatball scooping, nail hammering, and pan flipping. The first row shows the camera view, while the second row
provides a scene overview with the shaking motion. (b) Robot Base Robustness: The policy successfully compensated for base shaking, even
when the shaking frequency exceeded the robot’s control frequency. (c) Chicken Head Stabilization: At lower base movement frequencies,
the end effector displayed a stabilization effect similar to a chicken’s steady head. (d) Combined Robustness: The policy maintained task
performance under simultaneous camera and base shaking.

hammer nailing task, nail positions vary. For meatball scoop-
ing, meatball positions are tested. In soccer ball kicking, we
evaluate two goalkeeper configurations. For pan flipping, ob-
ject poses vary to test all areas of the pan. As shown in Table II,
our method achieves high success rates across these ranges.

Object Generalization: Our method generalizes effectively to
different objects in pan flipping tasks, including a toy egg, a
3D-printed meat patty, and a real burger bun (Figure 7, second
column). With only 13 demonstrations, the policy succeeds by
leveraging a simple but effective strategy: tilting the pan to
slide the object into a corner, then flicking the pan to propel
and flip the object. Our manipulation approach for pan flipping

enables robust generalization across diverse object types.

Tool Generalization: To assess the generalization ability of
our policy across different tools, we conducted a pan-flipping
experiment using a burger bun and five pans: large, medium,
small, tiny, and square. For each pan, we collected 12 trials
with varying initial configurations and reported the success
rates (Fig. 10). The policy was trained on demonstrations using
the large, medium, and square pans, and evaluated on all five.
Results indicate that our method exhibits some generalization
across both pan sizes and shapes (circular vs. square). High
success rates were observed with the large and medium pans.
However, performance declined on smaller pans, likely due to
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Fig. 9: Human Perturbation Robustness. This figure showcases the robot’s ability to handle human-induced perturbations across three
tasks: (1) In nail hammering, the robot successfully followed a manually moved nail; (2) In meatball scooping, it located and scooped
meatballs even when additional ones were thrown into the pan mid-task; and (3) In egg flipping, the robot consistently flipped the egg back
after human intervention repositioned it. These results highlight the policy’s robustness to unpredictable human perturbations.
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Fig. 10: Tool Generalization (a) The tested pans. (b) Success rate
across 12 testing trials.

their limited surface area. The square pan also showed lower
success rates, as its shallow edges allowed the bun to slide out
during flipping.

G. Robustness

Camera Pose Robustness: We evaluated the policy’s ability to
handle camera pose variations by introducing camera shaking
in three tasks: meatball scooping, nail hammering, and pan
flipping (egg), as shown in Figure 8(a). The first row shows the
camera view, while the second row shows the scene overview
and the shaking motion. Despite the disturbances, the policy
successfully completed all tasks. This robustness stems from
random cropping during training, which allows the policy to
adapt to partially cropped inputs and minor visual changes.
Robot Base Robustness: To evaluate robustness to base
movement, we manually shook the robot base during task
execution (Figure 8(b)). When the shaking frequency exceeded
the control frequency, the end effector oscillated with the base.
However, the task-space action design enabled the robot to
compensate for these movements and maintain task success.
Additionally, as shown in Figure 8(d), the policy remained
effective even when both camera and base shaking were
applied simultaneously.
Chicken Head Stabilization: At lower frequencies of base
movement, where the shaking was slower than the robot’s

control frequency, the end effector exhibited a stabilization
effect similar to a chicken’s head remaining steady [75], as
shown in Figure 8(c). The behavior highlights the robot’s
ability to maintain precise control during mild perturbations.
Human Perturbation Robustness: We further tested the
policy’s resilience to human-induced perturbations across three
tasks, as shown in Figure 9. In the nail hammering task, the
robot successfully tracked and followed a manually moved
nail by a human. During meatball scooping, the robot located
and scooped meatballs, even when additional meatballs were
thrown into the pan mid-task. For egg flipping, the robot
consistently flipped the egg back each time a human intervened
and returned the egg to different initial positions. These results
underscore the policy’s robustness in maintaining reliable
performance under real-time human interactions.

VII. DATA COLLECTION EFFICIENCY AND
AFFORDABILITY

We compare various data collection methods for robot
imitation learning, focusing on throughput, reliability, cost,
usability, and precision. Our evaluation includes teleoperation
tools like Gello and Spacemouse for 6DOF (UR5e) and
7DOF (Kinova Gen3) robots, alongside methods such as
Visual Imitation Made Easy, handheld grippers (e.g., UMI and
LEGATO), and devices like VR (Meta Quest 2), AR (Apple
Vision Pro), and Kinematic replicate (Gello).

A. Data Collection Efficiency

Our framework achieves significantly higher data collection
throughput than traditional methods, enabling more demon-
strations within the same timeframe. The improvement is
driven by the natural and intuitive efficiency of human play,
which ensures faster and more reliable task execution. Fig-
ure 11(a) highlights the superior manipulation capabilities
of human hands, while Figure 12 quantifies the substantial



TABLE IV: Comparison of Data Collection Methods. This table compares various data collection methods for robotics. For cost, we
calculate only the additional expenses required for data collection, excluding cameras, as they are considered a basic and commonly used
sensor for robots rather than an additional purchase. Each method is assessed based on cost, ease of use, required expertise, precision, and
maintenance effort. Our method stands out as cost-free, easy to use, highly precise, and requiring minimal maintenance.

Method Cost Ready-to-Use Pre-Knowledge Required Precise Maintenance Expense

Visual Imitation Made Easy [78] $340 No Yes No Moderate
UMI [16] $371 No Yes Yes Moderate
LEGATO [57] $1060 No Yes Yes Moderate
Spacemouse [17] $169 Yes Yes Yes Low
VR (Meta Quest 2 [40]) $300 Yes Yes No Moderate
AR (Apple Vision Pro [1]) $3499 Yes Yes Yes High
Gello [74] $272 No Yes No Moderate
Ours $0 Yes No Yes Minimal

(a) Human Hand Demonstration

Pan Flipping Wine Balancing

Meatball ScoopingSoccer Ball Kicking

(b) Teleoperation (c) Hand-Held Gripper

Teleoperation delay

Lacks tactile feedback

Slow movement

Not fast enough

Tool inertial slippage

Contact-induced displacement

Fig. 11: Data Collection Efficiency and Reliability. (a) Human hands excel in manipulation tasks, leveraging natural and intuitive efficiency.
(b) Failure cases for Gello and Spacemouse include insufficient speed, lack of tactile feedback during data collection, safety stops, collisions,
teleoperation delays, and difficulty handling high-speed or complex tasks. (c) Failure cases for handheld grippers such as UMI [16], where
issues arise from tool slippage due to inertia or displacement caused by contact forces.

time savings per episode. For nail hammering and meatball
scooping, Gello and Spacemouse were used as teleoperation
methods, respectively. Human hands reduced data collection
time by 73% and 81% for nail hammering and meatball
scooping, with consistently low variation in performance. In
more complex tasks like pan flipping, wine balancing, and
soccer ball kicking, teleoperation methods failed entirely due
to limitations such as lack of tactile feedback, delays, and
difficulty handling dynamic or precise actions. Our method
further reduces data collection time by 41% compared to
handheld grippers such as UMI [16] in nail hammering. UMI
proved ineffective in wine balancing and pan flipping due
to tool inertial slippage or contact-induced displacement, and
failed in soccer kicking because of difficulty localizing large,
fast motions. Moreover, it requires rich textures to build a
pre-collection map, which our method does not. These results
underscore the superior efficiency, robustness, and versatility
of human play as a scalable solution for high-quality robot
learning datasets.

B. Reliability

Figure 11(b) and Figure 11(c) illustrates typical failure cases
with Gello, Spacemouse, and UMI [16], which frequently
encounter issues such as safety stops or collisions during
data collection. In contrast, our method ensures smooth, un-
interrupted operation, avoiding these limitations. Traditional
methods face significant challenges in high-speed or complex

tasks. For example, Gello and Spacemouse struggle with repli-
cating the extreme dynamics and precise motions required for
flipping objects like eggs during pan flipping, often resulting in
unsuccessful attempts. Similarly, teleoperation delays prevent
timely strikes during soccer ball kicking, consistently leading
to missed kicks and repeated failures. In tasks like wine
balancing, the absence of tactile feedback impairs precision
during the data collection, causing the wine bottle to tip over
during data collection. Furthermore, in meatball scooping,
the velocity vectors generated by Spacemouse input lead
to jerky trajectories with redundant waypoints, significantly
reducing efficiency. These challenges make effective training
impractical with traditional methods. By leveraging human
play, our framework not only addresses these limitations but
also provides a reliable and scalable solution for dynamic and
precision-demanding tasks.

C. Discussion of Data Collection Methods
Table IV compares various data collection methods based

on cost, usability, expertise requirements, intuitiveness, and
precision. Our method incurs no additional cost ($0), unlike
hardware-dependent solutions like UMI and LEGATO, which
demand significant investment. This affordability makes our
approach accessible to users from diverse backgrounds without
financial constraints. Unlike hardware-based systems such as
UMI, LEGATO, Gello, and Spacemouse, which are prone
to malfunctions and maintenance issues, our hardware-free
framework ensures reliability and eliminates repair delays or
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Fig. 12: Quantitative Comparison of Data Collection Methods.
Human hands significantly reduce data collection time—by 73% for
nail hammering and 81% for meatball scooping—while maintaining
consistently low variation across trials. Teleoperation fails entirely in
dynamic tasks and tasks requiring high precision. In nail hammering,
human hands are 41% faster than UMI [16], which also struggles in
dynamic scenarios and low-texture environments.

expenses. Additionally, it requires no supplementary 3D print-
ing, in contrast to approaches like Visual Imitation Made Easy,
UMI, and LEGATO. The simplicity of our design promotes
inclusivity in collecting large-scale dataset for robot learning
research. Our method also offers a more natural experience
compared to tools like Spacemouse, while being far more cost-
effective than VR and AR devices. Moreover, systems like
Gello and Spacemouse lack the precision necessary for dy-
namic tasks, a limitation addressed by our approach. Overall,
our method is a cost-effective, and accessible solution for data
collection, overcoming key drawbacks of existing approaches
while reducing complexity and maintenance needs.

VIII. LIMITATIONS AND FUTURE WORK

Our framework has certain limitations. First, the perception
pipeline relies on FoundationPose for extracting the tool’s
pose during manipulation. Errors in pose estimation may
occasionally require data recollection, adding time and effort.
Improving the reliability of the perception pipeline through
more robust pose estimation algorithms or self-correction
mechanisms is a promising direction for future work. Second,
for novel view augmentation, significant noise and reduced
realism are observed when augmented views deviate too far
from the collected camera views, which can hinder policy per-
formance. Future efforts could focus on leveraging advanced
rendering techniques to enhance the realism of augmented
views and improve policy generalization. Third, we assume the
tool is rigidly attached to the robot’s end effector; however, in
real-world, contact-rich manipulation, minor shifts may occur,
potentially affecting performance. Addressing this issue by
incorporating tactile sensing could improve performance in

contact-intensive tasks. Additionally, our method assumes a
rigid tool and does not account for flexible or soft tools.
Future work could explore using flexible representations for
tool state estimation to better handle deformable tools in real-
world manipulation scenarios.

IX. CONCLUSION

In this work, we presented a novel framework for human-
to-robot imitation learning that leverages human play data to
bridge the embodiment gap and enables robust policy training
for diverse tool-use tasks. Unlike traditional data collection
methods, which are often costly, hardware-dependent, and
require technical expertise, our framework democratizes data
collection by removing the need for specialized equipment
or prior knowledge. Our approach makes data collection
more accessible and scalable, empowering broader adoption
in robotic learning. We validated our framework across a
range of challenging tasks, including nail hammering, meat-
ball scooping, pan flipping with various objects, wine bottle
balancing, and soccer ball kicking. The results demonstrate
the framework’s superior performance, robustness to variations
in camera poses and base movements, and adaptability to
different embodiments, such as 6-DOF and 7-DOF robots. By
enhancing accessibility, scalability, and reliability, our work
lays a strong foundation for advancing robotic manipulation
in complex, real-world scenarios.
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APPENDIX A
APPENDIX

A. Implementation Details

1) Hardware Design: We designed two fast tool changers
compatible with robots using the ISO 9409-1-50-4-M6 flange,
as shown in Figure 13. The left design utilizes a screw
mechanism to accommodate general tools, while the right
design employs clips for tools with specific mounting shapes.

Fig. 13: Fast Tool Changer. Two designs are shown: the left
accommodates general tools with a screw mechanism, and the right
clips onto tools with specific mounting shapes.

2) Tool Pose Estimation: We use Polycam to scan the tool
and obtain its mesh. The mesh is later feed into Foundation-
Pose [71] for 6D pose estimation.

B. Additional Results

1) Effects of Embodiment Segmentation: Embodiment Seg-
mentation masks the agent’s embodiments during data col-
lection and policy deployment, ensuring visually consistent
scenes and reducing the training-deployment visual gap. Em-
bodiment Segmentation significantly improves policy perfor-
mance, as shown in Figure 14. Figure 14(a) highlights failure
cases without segmentation. In the wine balancing task, the
robot strikes the table, triggering safety stops due to improper
bottle handling. In the soccer ball kicking task, the robot’s
actions are inconsistent, shorter, and less precise than during
training. Quantitative results in Figure 14(b) further underscore
segmentation’s impact. Across 10 trials, segmentation enabled
8 successes in the wine balancing task, while the model
without it achieved none. Similarly, in the soccer ball kicking
task, segmentation resulted in 6 successes, compared to 2
without it. By aligning training and testing visual distributions,
Embodiment Segmentation ensures consistent and reliable
robot performance during the training and deployment.
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Fig. 14: Effects of Embodiment Segmentation. (a) Failure cases
without segmentation: In the wine balancing task, the robot strikes
the table, triggering safety stops. In the soccer ball kicking task,
it performs shorter, less precise actions. (b) Quantitative results:
Segmentation improved success rates in wine balancing (8 vs. 0)
and soccer ball kicking (6 vs. 2) by reducing the visual gap between
training and deployment.
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